On the cytoskeleton and soft glassy rheology.
نویسندگان
چکیده
The cytoskeleton is a complex structure within the cellular corpus that is responsible for the main structural properties and motilities of cells. A wide range of models have been utilized to understand cytoskeletal rheology and mechanics (see e.g. [Mofrad, M., Kamm, R., 2006. Cytoskeletal Mechanics: Models and Measurements. Cambridge University Press, Cambridge]). From this large collection of proposed models, the soft glassy rheological model (originally developed for inert soft glassy materials) has gained a certain traction in the literature due to the close resemblance of its predictions to certain mechanical data measured on cell cultures [Fabry, B., Maksym, G., Butler, J., Glogauer, M., Navajas, D., Fredberg, J., 2001. Scaling the microrheology of living cells. Physical Review Letters 87, 14102]. We first review classical linear rheological theory in a concise fashion followed by an examination of the soft glassy rheological theory. With this background we discuss the observed behavior of the cytoskeleton and the inherent limitations of classical rheological models for the cytoskeleton. This then leads into a discussion of the advantages and disadvantages presented to us by the soft glassy rheological model. We close with some comments of caution and recommendations on future avenues of exploration.
منابع مشابه
The Glassy Wormlike Chain
We introduce a new model for the dynamics of a wormlike chain in an environment that gives rise to a rough free energy landscape, which we baptise the glassy wormlike chain. It is obtained from the common wormlike chain by an exponential stretching of the relaxation spectrum of its long-wavelength eigenmodes, controlled by a single parameter E . Predictions for pertinent observables such as the...
متن کاملNovel dynamic rheological behavior of individual focal adhesions measured within single cells using electromagnetic pulling cytometry.
The rheology of cells and sub-cellular structures, such as focal adhesions, are important for cell form and function. Here we describe electromagnetic pulling cytometry (EPC), a technique to analyze cell rheology by applying dynamic tensional forces to ligand-coated magnetic microbeads bound to cell surface integrin receptors. EPC utilizes an electromagnetic microneedle that is integrated with ...
متن کاملCytoskeletal remodelling and slow dynamics in the living cell.
The cytoskeleton (CSK) is a crowded network of structural proteins that stabilizes cell shape and drives cell motions. Recent studies on the dynamics of the CSK have established that a wide variety of cell types exhibit rheology in which responses are not tied to any particular relaxation times and are thus scale-free. Scale-free rheology is often found in a class of materials called soft glass...
متن کاملSlow dynamics, aging, and glassy rheology in soft and living matter
We explore the origins of slow dynamics, aging and glassy rheology in soft and living matter. Non-diffusive slow dynamics and aging in materials characterised by crowding of the constituents can be explained in terms of structural rearrangement or remodelling events that occur within the jammed state. In this context, we introduce the jamming phase diagram proposed by Liu and Nagel to understan...
متن کاملExploring the Rheology of Soft Glassy Matter
In this paper I will review some of the recent results that have been obtained in the soft glassy materials rhology. I will concentrate my attention on the formulation of two main models for soft materials: Soft Glassy Material (SRG) model proposed by Peter Sollich that quanti es the mechanical response of these systems and predicts aging under suitable conditions and a time recurrence model (c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 41 7 شماره
صفحات -
تاریخ انتشار 2008